The fiscal cost of the provision of basic public services, subsidies for expenditure on food and basic citizen income per household in Costa Rica, Guatemala and El Salvador during the COVID-19 pandemic: An expenditure analysis
DOI:
https://doi.org/10.47872/laer-2020-29-7sKeywords:
COVID-19, consumption, basic public services, food, basic income, fiscal costsAbstract
The objective of this article is to estimate the fiscal costs, using income and expenditure surveys, of the provision of basic public services (electricity, water, telephone and internet) for the 40% of the population with the lowest incomes, the provision of a subsidy of 50% of actual food expenditure for the 40% of the population with the lowest incomes and the provision of a basic income per household equivalent to the value of the poverty line for households under the poverty line in Costa Rica, Guatemala and El Salvador during the COVID-19 pandemic. These fiscal options are a fundamental component of any public health strategy against the COVID-19 considering they give economic viability to the population during the isolation and mobility restrictions period and financial support during the economic and social emergency. The results show that the fiscal costs of the provision of basic public services to 40% of the population with the lowest incomes or other fiscal measures considering less ambitious targets are heterogeneous between these Central American countries because of previous conditions and public policies but are reasonable and possible to cover under the actual circumstances.
References
Al-Habashene, F. & Al-Majali, (2014). Estimating the Engel curves for Household expenditure in Jordan from 2010 to 2011, European Scientific Journal, 10(2), pp. 267-282. https://eujournal.org/index.php/esj/article/view/2594
Alvarez, F. E., D. Argente, & F. Lippi (2020). A simple planning problem for COVID-19 lockdown (No. w26981). National Bureau of Economic Research. https://www.nber.org/papers/w26981
Attanasion, O, A. Meshard & E. Battistin (2012). Food and cash transfers: evidence from Colombia, Economic Journal, 122, 559, pp. 92-124. https://doi.org/10.1111/j.1468-0297.2011.02473.x
Baker, S.R., R. Farrokhnia, S. Meyer, M. Pagel & C. Yanellis (2020). How does household spending respond to an epidemic? Consumption during the 2020 COVID-19 pandemic, technical report, NBER, working paper, No. 26949. https://www.nber.org/papers/w26949
Banks, J., R. Blundell & A. Lewbel (1997). Quadratic Engel curves and consumer demand, Review of Economics and Statistics, 79(4), pp. 527-539. https://doi.org/10.1162/003465397557015
Battistin, E. & M. De Nadai (2015). Identification and estimation of Engel curves with endogenous and unobserved expenditures, Journal of Applied Econometrics, vol. 30, pp. 487-508. https://doi.org/10.1002/jae.2349
Blofield, M. & F. Filgueira (2020). COVID-19 and Latin America: social impacts, policies and a fiscal case for an emergency social protection floor, Social protection program, CIPPEC. https://www.cippec.org/publicacion/covid-19-and-latin-america-social-impact-policies-and-fiscal-case-for-an-emergency-social-protection-floor/
Blundell, R.W., X. Chen & D. Kristensen (2007). Semi-nonparametric IV estimation of shape-invariant Engel curves, Econometrica, 75(6), Noviembre, pp. 1613–1669. http://www.jstor.org/stable/4502045
Bodenstein, M.; G. Corsetti & L. Guerrieri (2020). Social distancing and supply disruptions in a pandemic, Finance and Economic Series, Division of Research, Statistics and Monetary Affairs, federal Reserve Board, Washington, DC. https://www.federalreserve.gov/econres/feds/files/2020031pap.pdf
Bottan, Nicolás, Bridget Hoffmann & Diego Vera-Cossio (2020). Coronavirus Survey Results Show Big Impacts, Linkages between Labor Markets and Inequality. Ideas Matter Blog. Inter-American Development Bank. May 8. https://blogs.iadb.org/ideas-matter/en/coronavirus-survey-results-show-big-impacts-linkages-between-labor-markets-and-inequality/
Chai, A. & A. Moneta (2010). Retrospectives: Engel curves, Journal of Economic Perspectives, American Economic Association, vol. 24(1), pp. 225-240. DOI: 10.1257/jep.24.1.225
Deaton, A. & J. Muellbauer (1980). Economics and Consumer Behavior, Cambridge University Press.
Deb, P., D. Furceri, J.D. Ostroy & N. Tawk (2020). The Economic Effects of COVID-19 Containment Measures, working paper, FMI 20/158, august, pp 32-75. https://www.imf.org/en/Publications/WP/Issues/2020/08/07/The-Economic-Effects-of-COVID-19-Containment-Measures-49571
Dingel, J. & B. Neiman (2020). How Many Jobs Can be Done at Home? Journal of Public Economics, 189, DOI: 10.1016/j. jpubeco.2020.104235.
ECLAC (2020). Childhood and urban housing inequality in Latin America and the Caribbean. Informative note (published online). https://www.cepal.org/es/notas/infancia-desigualdad-habitacional-urbana-america-latina-caribe
Eichenbaum, M. S., S. Rebelo &M. Trabandt (2020). The macroeconomics of epidemics (No. w26882). National Bureau of Economic Research. https://www.nber.org/papers/w26882
Headey, D.D. & H.H. Alderman (2019). The Relative Caloric Prices of Healthy and Unhealthy Foods Differ Systematically across Income Levels and Continents. The Journal of Nutrition, 149(11): 2020–2033. https://doi.org/10.1093/jn/nxz158
Heckman, J. J. (1979). Sample selection bias as a specification error. Econometrica: Journal of the econometric society, 153-161. https://doi.org/10.2307/1912352
Hoffmann, R., & A. L. Kassouf (2005). Deriving conditional and unconditional marginal effects in log earnings equations estimated by Heckman's procedure. Applied Economics, 37(11), 1303-1311. https://doi.org/10.1080/00036840500118614
IMF (2020) World Economic Outlook, June 2020: A Crisis Like No Other, An Uncertain Recovery. https://www.imf.org/en/Publications/WEO/Issues/2020/06/24/WEOUpdateJune2020
Jordá, O., S.R.R Singh & A.M. Taylor (2020). Longer-run economic consequences of pandemics, Technical Report, NBER, Working Paper No. 26934. https://www.nber.org/system/files/working_papers/w26934/w26934.pdf
Levinson, A., & J. O’Brien (2019). Environmental Engel curves: Indirect emissions of common air pollutants. Review of Economics and Statistics, 101(1), 121-133. https://doi.org/10.1162/rest_a_00736
Najera, H. & C. Huffman (2020). Estimación del costo de eliminar la pobreza extrema por ingreso en México en tiempos de COVID, Documento de trabajo, Programa de Estudios para el desarrollo, UNAM. http://www.pued.unam.mx/export/sites/default/archivos/covid/DocTecnico.pdf
Nakamura, E., J. Steinsson & M. Liu (2016). Are Chinese growth and inflation too smooth? Evidence from Engel curves. American Economic Journal: Macroeconomics, 8(3), 113-44. DOI: 10.1257/mac.20150074
Pesaran, M.H. (2015). Time series and panel data econometrics, Oxford University Press.
Raddatz, C. (2009). The wrap of god: macroeconomic costs of natural disasters, Policy Research working paper, no. WPS 5039, Washington, D.C. Banco Mundial. https://elibrary.worldbank.org/doi/abs/10.1596/1813-9450-5039
Sager, L. (2019). Income inequality and carbon consumption: Evidence from Environmental Engel curves. Energy Economics, 84, 104507. https://doi.org/10.1016/j.eneco.2019.104507
World Bank (2020) La economÃa en los tiempo del COVID-19. https://openknowledge.worldbank.org/bitstream/handle/10986/33555/211570SP.pdf?sequence=12
Downloads
Published
Issue
Section
License
Copyright (c) 2020 Luis Miguel Galindo, Fernando Filgueira, Marike Blofield, Carlos Alberto Francisco Cruz
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
LAER Copyright and License
Authors submitting articles to Latin American Economic Review (LAER), automatically grant this journal a license to publish. Copyright of all published material remains with the authors, who can reuse it in future work without needing to make reference to LAER. Similarly, any other contribution of material to the website (for example text, photographs, graphics, video or audio) automatically grants us a right to publish. Copyright, however, remains with the author(s).
Authors release their work under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). This license allows anyone to copy, distribute and transmit the work, provided the use has no derivatives, is non-commercial and appropriate credit to the author(s) is given. (If you remix, transform, or build upon the material, you may not distribute the modified material.)
A human-readable summary of the licence:
https://creativecommons.org/licenses/by-nc-nd/4.0/
Full legal text: