Tweeting Inflation
Real-Time measures of Inflation Perception in Colombia.
DOI:
https://doi.org/10.60758/laer.v34i.302Keywords:
Inflation perceptions, Twitter, Real-time data, Central BanksAbstract
This study follows a novel approach proposed by Angelico et al. (2022) using Twitter to measure inflation perception in Colombia in real time. By applying machine learning techniques, we implement two real-time indicators and show that both exhibit a dynamic similar to inflation and inflation expectations for the sample period January 2015 to March 2023. Our interpretation of these results suggests that our indicators are closely linked to the underlying factors that drive inflation perception. Overall, this approach provides a valuable instrument for gauging public sentiment towards inflation and complements the traditional inflation expectations measures used in the inflation–targeting framework.
References
Angelico, Cristina et al. (2022). “Can we measure inflation expectations using Twitter?” In: Journal
of Econometrics 228.2, pp. 259–277. issn: 0304-4076. doi: https://doi.org/10.1016/j.
jeconom.2021.12.008.
Antenucci, Dolan et al. (Mar. 2014). Using Social Media to Measure Labor Market Flows. NBER
Working Papers 20010. National Bureau of Economic Research, Inc.
Bailliu, Jeannine et al. (2019). “Can media and text analytics provide insights into labour market
conditions in China?” In: International Journal of Forecasting 35.3, pp. 1118–1130. doi: 10.
/j.ijforecast.2019.
Becerra, Juan Sebasti´an and Andr´es Sagner (July 2020). Twitter-Based Economic Policy Uncertainty
Index for Chile. Working Papers Central Bank of Chile 883. Central Bank of Chile.
Blei, David M, Andrew Y Ng, and Michael I Jordan (2003). “Latent dirichlet allocation”. In:
Journal of machine Learning research 3.Jan, pp. 993–1022.
Bricongne, Jean-Charles et al. (Dec. 2022). New indicators of perceived inflation in France based
on media data. https : / / blocnotesdeleco . banque - france . fr / en / blog - entry / new -
indicators-perceived-inflation-france-based-media-data.
Chang, Jonathan et al. (2009). “Reading tea leaves: How humans interpret topic models”. In:
Advances in neural information processing systems 22.
Cicek, Serkan and Cuneyt Akar (2014). “Do Inflation Expectations Converge Toward Inflation
Target or Actual Inflation? Evidence from Expectation Gap Persistence”. In: Central Bank Review
1, pp. 15–21. url: https : / / ideas . repec . org / a / tcb / cebare / v14y2014i1p15 -
html.
Conneau, Alexis et al. (July 2020). “Unsupervised Cross-lingual Representation Learning at
Scale”. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.
Online: Association for Computational Linguistics, pp. 8440–8451. doi: 10.18653/v1/
acl-main.747. url: https://aclanthology.org/2020.acl-main.747.
Datareportal (2022). DIGITAL 2022: COLOMBIA. url: https://datareportal.com/reports/
digital-2022-colombia (visited on 03/31/2022).
Espinosa-Torres, Juan Andr´es, Luis Fernando Melo-Velandia, and Jos´e Fernando Moreno-Guti´errez
(Mar. 2017). “Expectativas de inflaci´on, prima de riesgo inflacionario y prima de liquidez: una
descomposici´on del break-even inflation para los bonos del Gobierno colombiano”. In: Revista Desarrollo y Sociedad 1.78, pp. 315–365. doi: 10.13043/dys.78.8. url: https://revistas.
uniandes.edu.co/index.php/dys/article/view/6702.
Feldkircher, Martin and Pierre L. Siklos (2019). “Global inflation dynamics and inflation expectations”.
In: International Review of Economics & Finance 64.C, pp. 217–241. doi: 10.1016/
j.iref.2019.06.00. url: https://ideas.repec.org/a/eee/reveco/v64y2019icp217-
html.
Fitchett, Hamish and Finn Robinson (Jan. 2021). Down to business: Which QSBO measures
are the best at forecasting? Reserve Bank of New Zealand Analytical Notes series AN2021/01.
Reserve Bank of New Zealand. url: https://ideas.repec.org/p/nzb/nzbans/2021-01.html.
Gabrielyan, Diana, Jaan Masso, and Lenno Uusk¨ula (2020). “Mining News Data for the Measurement
and Prediction of Inflation Expectations”. In: Theory and Applications of Time Series
Analysis. Ed. by Olga Valenzuela et al. Cham: Springer International Publishing, pp. 253–271.
isbn: 978-3-030-56219-9.
Giacomini, Raffaella and Halbert White (2006). “Tests of Conditional Predictive Ability”. In:
Econometrica 74.6, pp. 1545–1578. issn: 00129682, 14680262. url: http://www.jstor.org/
stable/4123083 (visited on 05/08/2023).
Glaeser, Edward L., Hyunjin Kim, and Michael Luca (June 2019). “Nowcasting the Local Economy:
Using Yelp Data to Measure Economic Activity”. In: Big Data for Twenty-First-Century
Economic Statistics. NBER Chapters. National Bureau of Economic Research, Inc.
Gonz´alez-Molano, Eliana R. et al. (July 2020). Nueva Clasificaci´on del BANREP de la Canasta
del IPC y revisi´on de las medidas de Inflaci´on B´asica en Colombia. Borradores de Economia
Banco de la Republica de Colombia. doi: https://doi.org/10.32468/. url: https:
//ideas.repec.org/p/bdr/borrec/1122.html.
Grant, Alan P. and Lloyd B. Thomas (1999). “Inflationary expectations and rationality revisited”.
In: Economics Letters 62.3, pp. 331–338. url: https://EconPapers.repec.org/RePEc:eee:
ecolet:v:62:y:1999:i:3:p:331-338.
Indaco, Agust´ın (2020). “From twitter to GDP: Estimating economic activity from social media”.
In: Regional Science and Urban Economics 85.C. doi: 10.1016/j.regsciurbeco.20.
Larsen, Vegard H., Leif Anders Thorsrud, and Julia Zhulanova (2021). “News-driven inflation
expectations and information rigidities”. In: Journal of Monetary Economics 117, pp. 507–520.
issn: 0304-3932. doi: https://doi.org/10.1016/j.jmoneco.2020.03.004. url: https:
//www.sciencedirect.com/science/article/pii/S030439322030026X.
Li, Guowen et al. (2017). “Using LDA Model to Quantify and Visualize Textual Financial Stability
Report”. In: Procedia Computer Science 122. 5th International Conference on Information
Technology and Quantitative Management, ITQM 2017, pp. 370–376. issn: 1877-0509. doi:
https://doi.org/10.1016/j.procs.2017.11.382. url: https://www.sciencedirect.com/
science/article/pii/S187705091732625X.
Marcellino, Massimiliano, James H. Stock, and Mark W. Watson (2006). “A comparison of direct
and iterated multistep AR methods for forecasting macroeconomic time series”. In: Journal
of Econometrics 135.1, pp. 499–526. issn: 0304-4076. doi: https://doi.org/10.1016/j.
jeconom.2005.07.020. url: https://www.sciencedirect.com/science/article/pii/
S030440760500165X.
Mikolov, Tomas et al. (2013). “Distributed Representations of Words and Phrases and their
Compositionality”. In: Proceedings of NIPS.
Parra-Polan´ıa, Juli´an Andr´es (Mar. 2020). Descripci´on de las Minutas e Informes de Pol´ıtica
Monetaria a partir de herramientas de Ling¨u´ıstica Computacional. Tech. rep. doi: https://
doi.org/10.32468/be.1108. url: https://repositorio.banrep.gov.co/handle/20.500.
/9826.
P´erez, Juan Manuel et al. (2021). “Robertuito: a pre-trained language model for social media
text in spanish”. In: arXiv preprint arXiv:2111.09453.
R¨oder, Michael, Andreas Both, and Alexander Hinneburg (2015). “Exploring the Space of Topic
Coherence Measures”. In: Proceedings of the Eighth ACM International Conference on Web
Search and Data Mining. WSDM ’15. Shanghai, China: Association for Computing Machinery,
pp. 399–408. isbn: 9781450333177. doi: 10.1145/2684822.2685324. url: https://doi.
org/10.1145/2684822.2685324.
Salvatore, Camilla, Silvia Biffignandi, and Annamaria Bianchi (Aug. 2021). “Social Media and
Twitter Data Quality for New Social Indicators”. In: Social Indicators Research: An International
and Interdisciplinary Journal for Quality-of-Life Measurement 156.2, pp. 601–630. doi: 10.1007/
s11205-020-02296-.
Vydra, Simon and Jaroslaw Kantorowicz (June 2021). “Tracing Policy-relevant Information in
Social Media: The Case of Twitter before and during the COVID-19 Crisis”. In: Statistics, Politics
and Policy 12.1, pp. 87–127. doi: 10.1515/spp-2020-0013.
Xu, Yingying et al. (2016). “Modeling heterogeneous inflation expectations: empirical evidence
from demographic data?” In: Economic Modelling 57, pp. 153–163. issn: 0264-9993. doi: https://doi.org/10.1016/j.econmod.2016.04.017. url: https://www.sciencedirect.com/
science/article/pii/S0264999316301080
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Mario A. Ramos-Veloza

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
LAER Copyright and License
Authors submitting articles to Latin American Economic Review (LAER), automatically grant this journal a license to publish. Copyright of all published material remains with the authors, who can reuse it in future work without needing to make reference to LAER. Similarly, any other contribution of material to the website (for example text, photographs, graphics, video or audio) automatically grants us a right to publish. Copyright, however, remains with the author(s).
Authors release their work under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). This license allows anyone to copy, distribute and transmit the work, provided the use has no derivatives, is non-commercial and appropriate credit to the author(s) is given. (If you remix, transform, or build upon the material, you may not distribute the modified material.)
A human-readable summary of the licence:
https://creativecommons.org/licenses/by-nc-nd/4.0/
Full legal text: