Tweeting Inflation

Real-Time measures of Inflation Perception in Colombia.

Authors

  • Mario A. Ramos-Veloza Banco de la República
  • David Mauricio Orozco Rios
  • Jonathan Alexander Muñoz Martínez

DOI:

https://doi.org/10.60758/laer.v34i.302

Keywords:

Inflation perceptions, Twitter, Real-time data, Central Banks

Abstract

This study follows a novel approach proposed by Angelico et al. (2022) using Twitter to measure inflation perception in Colombia in real time. By applying machine learning techniques, we implement two real-time indicators and show that both exhibit a dynamic similar to inflation and inflation expectations for the sample period January 2015 to March 2023. Our interpretation of these results suggests that our indicators are closely linked to the underlying factors that drive inflation perception. Overall, this approach provides a valuable instrument for gauging public sentiment towards inflation and complements the traditional inflation expectations measures used in the inflation–targeting framework.

References

Angelico, Cristina et al. (2022). “Can we measure inflation expectations using Twitter?” In: Journal

of Econometrics 228.2, pp. 259–277. issn: 0304-4076. doi: https://doi.org/10.1016/j.

jeconom.2021.12.008.

Antenucci, Dolan et al. (Mar. 2014). Using Social Media to Measure Labor Market Flows. NBER

Working Papers 20010. National Bureau of Economic Research, Inc.

Bailliu, Jeannine et al. (2019). “Can media and text analytics provide insights into labour market

conditions in China?” In: International Journal of Forecasting 35.3, pp. 1118–1130. doi: 10.

/j.ijforecast.2019.

Becerra, Juan Sebasti´an and Andr´es Sagner (July 2020). Twitter-Based Economic Policy Uncertainty

Index for Chile. Working Papers Central Bank of Chile 883. Central Bank of Chile.

Blei, David M, Andrew Y Ng, and Michael I Jordan (2003). “Latent dirichlet allocation”. In:

Journal of machine Learning research 3.Jan, pp. 993–1022.

Bricongne, Jean-Charles et al. (Dec. 2022). New indicators of perceived inflation in France based

on media data. https : / / blocnotesdeleco . banque - france . fr / en / blog - entry / new -

indicators-perceived-inflation-france-based-media-data.

Chang, Jonathan et al. (2009). “Reading tea leaves: How humans interpret topic models”. In:

Advances in neural information processing systems 22.

Cicek, Serkan and Cuneyt Akar (2014). “Do Inflation Expectations Converge Toward Inflation

Target or Actual Inflation? Evidence from Expectation Gap Persistence”. In: Central Bank Review

1, pp. 15–21. url: https : / / ideas . repec . org / a / tcb / cebare / v14y2014i1p15 -

html.

Conneau, Alexis et al. (July 2020). “Unsupervised Cross-lingual Representation Learning at

Scale”. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.

Online: Association for Computational Linguistics, pp. 8440–8451. doi: 10.18653/v1/

acl-main.747. url: https://aclanthology.org/2020.acl-main.747.

Datareportal (2022). DIGITAL 2022: COLOMBIA. url: https://datareportal.com/reports/

digital-2022-colombia (visited on 03/31/2022).

Espinosa-Torres, Juan Andr´es, Luis Fernando Melo-Velandia, and Jos´e Fernando Moreno-Guti´errez

(Mar. 2017). “Expectativas de inflaci´on, prima de riesgo inflacionario y prima de liquidez: una

descomposici´on del break-even inflation para los bonos del Gobierno colombiano”. In: Revista Desarrollo y Sociedad 1.78, pp. 315–365. doi: 10.13043/dys.78.8. url: https://revistas.

uniandes.edu.co/index.php/dys/article/view/6702.

Feldkircher, Martin and Pierre L. Siklos (2019). “Global inflation dynamics and inflation expectations”.

In: International Review of Economics & Finance 64.C, pp. 217–241. doi: 10.1016/

j.iref.2019.06.00. url: https://ideas.repec.org/a/eee/reveco/v64y2019icp217-

html.

Fitchett, Hamish and Finn Robinson (Jan. 2021). Down to business: Which QSBO measures

are the best at forecasting? Reserve Bank of New Zealand Analytical Notes series AN2021/01.

Reserve Bank of New Zealand. url: https://ideas.repec.org/p/nzb/nzbans/2021-01.html.

Gabrielyan, Diana, Jaan Masso, and Lenno Uusk¨ula (2020). “Mining News Data for the Measurement

and Prediction of Inflation Expectations”. In: Theory and Applications of Time Series

Analysis. Ed. by Olga Valenzuela et al. Cham: Springer International Publishing, pp. 253–271.

isbn: 978-3-030-56219-9.

Giacomini, Raffaella and Halbert White (2006). “Tests of Conditional Predictive Ability”. In:

Econometrica 74.6, pp. 1545–1578. issn: 00129682, 14680262. url: http://www.jstor.org/

stable/4123083 (visited on 05/08/2023).

Glaeser, Edward L., Hyunjin Kim, and Michael Luca (June 2019). “Nowcasting the Local Economy:

Using Yelp Data to Measure Economic Activity”. In: Big Data for Twenty-First-Century

Economic Statistics. NBER Chapters. National Bureau of Economic Research, Inc.

Gonz´alez-Molano, Eliana R. et al. (July 2020). Nueva Clasificaci´on del BANREP de la Canasta

del IPC y revisi´on de las medidas de Inflaci´on B´asica en Colombia. Borradores de Economia

Banco de la Republica de Colombia. doi: https://doi.org/10.32468/. url: https:

//ideas.repec.org/p/bdr/borrec/1122.html.

Grant, Alan P. and Lloyd B. Thomas (1999). “Inflationary expectations and rationality revisited”.

In: Economics Letters 62.3, pp. 331–338. url: https://EconPapers.repec.org/RePEc:eee:

ecolet:v:62:y:1999:i:3:p:331-338.

Indaco, Agust´ın (2020). “From twitter to GDP: Estimating economic activity from social media”.

In: Regional Science and Urban Economics 85.C. doi: 10.1016/j.regsciurbeco.20.

Larsen, Vegard H., Leif Anders Thorsrud, and Julia Zhulanova (2021). “News-driven inflation

expectations and information rigidities”. In: Journal of Monetary Economics 117, pp. 507–520.

issn: 0304-3932. doi: https://doi.org/10.1016/j.jmoneco.2020.03.004. url: https:

//www.sciencedirect.com/science/article/pii/S030439322030026X.

Li, Guowen et al. (2017). “Using LDA Model to Quantify and Visualize Textual Financial Stability

Report”. In: Procedia Computer Science 122. 5th International Conference on Information

Technology and Quantitative Management, ITQM 2017, pp. 370–376. issn: 1877-0509. doi:

https://doi.org/10.1016/j.procs.2017.11.382. url: https://www.sciencedirect.com/

science/article/pii/S187705091732625X.

Marcellino, Massimiliano, James H. Stock, and Mark W. Watson (2006). “A comparison of direct

and iterated multistep AR methods for forecasting macroeconomic time series”. In: Journal

of Econometrics 135.1, pp. 499–526. issn: 0304-4076. doi: https://doi.org/10.1016/j.

jeconom.2005.07.020. url: https://www.sciencedirect.com/science/article/pii/

S030440760500165X.

Mikolov, Tomas et al. (2013). “Distributed Representations of Words and Phrases and their

Compositionality”. In: Proceedings of NIPS.

Parra-Polan´ıa, Juli´an Andr´es (Mar. 2020). Descripci´on de las Minutas e Informes de Pol´ıtica

Monetaria a partir de herramientas de Ling¨u´ıstica Computacional. Tech. rep. doi: https://

doi.org/10.32468/be.1108. url: https://repositorio.banrep.gov.co/handle/20.500.

/9826.

P´erez, Juan Manuel et al. (2021). “Robertuito: a pre-trained language model for social media

text in spanish”. In: arXiv preprint arXiv:2111.09453.

R¨oder, Michael, Andreas Both, and Alexander Hinneburg (2015). “Exploring the Space of Topic

Coherence Measures”. In: Proceedings of the Eighth ACM International Conference on Web

Search and Data Mining. WSDM ’15. Shanghai, China: Association for Computing Machinery,

pp. 399–408. isbn: 9781450333177. doi: 10.1145/2684822.2685324. url: https://doi.

org/10.1145/2684822.2685324.

Salvatore, Camilla, Silvia Biffignandi, and Annamaria Bianchi (Aug. 2021). “Social Media and

Twitter Data Quality for New Social Indicators”. In: Social Indicators Research: An International

and Interdisciplinary Journal for Quality-of-Life Measurement 156.2, pp. 601–630. doi: 10.1007/

s11205-020-02296-.

Vydra, Simon and Jaroslaw Kantorowicz (June 2021). “Tracing Policy-relevant Information in

Social Media: The Case of Twitter before and during the COVID-19 Crisis”. In: Statistics, Politics

and Policy 12.1, pp. 87–127. doi: 10.1515/spp-2020-0013.

Xu, Yingying et al. (2016). “Modeling heterogeneous inflation expectations: empirical evidence

from demographic data?” In: Economic Modelling 57, pp. 153–163. issn: 0264-9993. doi: https://doi.org/10.1016/j.econmod.2016.04.017. url: https://www.sciencedirect.com/

science/article/pii/S0264999316301080

Downloads

Published

2025-02-06

Issue

Section

Regular articles

How to Cite

Tweeting Inflation: Real-Time measures of Inflation Perception in Colombia. (2025). Latin American Economic Review, 33, 1-39. https://doi.org/10.60758/laer.v34i.302

Most read articles by the same author(s)

Similar Articles

11-20 of 27

You may also start an advanced similarity search for this article.